
p > 2 spin glasses with first-order ferromagnetic transitions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys. A: Math. Gen. 33 3081

(http://iopscience.iop.org/0305-4470/33/16/302)

Download details:

IP Address: 171.66.16.118

The article was downloaded on 02/06/2010 at 08:05

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/33/16
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 33 (2000) 3081–3091. Printed in the UK PII: S0305-4470(00)10336-1

p > 2 spin glasses with first-order ferromagnetic transitions

Peter Gillin and David Sherrington
Physics Department, University of Oxford, Theoretical Physics, 1 Keble Road, Oxford OX1 3NP,
UK

Received 14 December 1999

Abstract. We consider an infinite-range spherical p-spin glass model with an additional r-spin
ferromagnetic interaction, both statically using a replica analysis and dynamically via a generating
functional method. For r > 2 we find that there are first-order transitions to ferromagnetic
phases. For r < p there are two ferromagnetic phases, one non-glassy replica symmetric and
one exhibiting glassy one-step replica symmetry breaking and ageing; whereas for r � p only the
replica symmetric phase exists.

1. Introduction

The infinite-range spherical spin glass with p > 2 body random exchange interactions has
attracted significant attention recently for a number of reasons. Among these are: (i) it is
exactly soluble in the thermodynamic limit for both its equilibrium properties and for its off-
equilibrium macrodynamics (at least in the sense of coupled equations for macroscopic order
functions and ansätze solving them in a long-time limit), (ii) it exhibits replica symmetry
breaking (RSB) and ageing glassy macrostates, (iii) the RSB is of the one-step kind (1RSB)
even down to the lowest temperatures. (In its discontinuous variant, 1RSB is believed to be
symptomatic of many systems exhibiting glassy behaviour without Hamiltonian disorder.)

The original work [1, 2] and most subsequent advances have concentrated on situations
where the exchange distribution is symmetric, albeit possibly with an external field. More
recently [3] an extension was introduced to allow for an additional ferromagnetic interaction,
stimulated by the existence of many physical systems with large coherently coordinated
attractors, such as most real spin glass materials with appropriate concentrations [4], neural
networks [5], proteins [6], and error-correcting codes [7]. This extension was however
limited to two-body ferromagnetic exchange, with corresponding second-order ferromagnetic
transitions. In this paper we extend the study further to include r > 2 body ferromagnetic
interactions for which the onset of ferromagnetism is first order. This is of relevance both for
application to real systems (for example, error-correcting codes have r = p and often r > 2;
in the Hopfield model the transition from neural non-retrieval to retrieval is first order) and
since it brings in new features (spinodal and thermodynamic transitions, metastability, and
suppression of glassy ferromagnetism).

2. The model

The Hamiltonian we use is

H =
∑

i1<i2···<ip
Ji1...ipφi1 . . . φip − J0(r − 1)!

Nr−1

∑
i1<i2···<ir

φi1 . . . φir (1)
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where the Ji1...ip are independent quenched random couplings given by a Gaussian distribution
with zero mean and variance p!J 2/2Np−1. The spins φi are real numbers subject to the
spherical constraint

1

N

∑
i

φ2
i = 1. (2)

We consider p > 2 so that replica symmetry is broken for low temperatures, spherical spins
so that 1RSB is sufficient at all temperatures, and infinite-range interactions so that mean field
theory is exact. For r = 1 this reduces to the model of [1, 2], for r = 2 it becomes that of [3],
but we shall also be interested in r > 2.

In considering the phase diagram, we will identify lines of four types. Since there are
first-order transitions, in the statics we must consider the spinodal lines (where a phase appears)
and the thermodynamic lines (where it becomes thermodynamically preferred due to its free
energy). A modified replica analysis employing the criterion of marginal stability (MS) leads
to a different set of spinodal lines. Finally, there are spinodal lines generated by a study of the
Langevin dynamics at long times. As in the cases studied previously, with an external field [2]
or a two-spin coupling [3], the dynamic lines are identical to the MS lines.

3. Replica theory

The equilibrium properties of this model are given by the replica method [8,9] in which 1RSB is
sufficient. This generates four order parameters governed by self-consistent equations. Three
of these describe the probability distribution P(q) of the overlap between pure states: P(q)
has two δ-function spikes, one corresponding to the self-overlap

q1 = qSS = 1

N

[ ∑
i

(〈φi〉S)2
]

av

(3)

and one corresponding to the mutual overlap

q0 = qSS
′ = 1

N

[ ∑
i

〈φi〉S〈φi〉S ′
]

av

S �= S ′ (4)

where 〈. . .〉S refers to the thermodynamic average over the microstates of the pure state S and
[. . .]av to the average over the quenched disorder; the strength of these two are 1 − x and x
respectively. The fourth order parameter is the magnetization M .

The replica free energy F is, in the thermodynamic limit (N → ∞), given by

2βF

N
= lim

n→0

1

n

[
− β2J 2

2

∑
ab

q
p

ab − 2βJ0

r

∑
a

Mr
a − ln det(q −M ⊗M)

]
(5)

where the replica indices a and b run from 1 to n, and M ⊗M represents the outer product of
the vectors. Under the 1RSB ansatz [10] this becomes

2βF

N
= −β

2J 2

2
(1 − qp)− 2βJ0

r
Mr − ln(1 − q1)− 1

x
ln

(
1 − q

1 − q1

)
− q0 −M2

1 − q
(6)

where we have defined an average over P(q): for any value of m,

qm = (1 − x)qm1 + xqm0 . (7)

Stationarity of F leads to the self-consistency equations. Extremizing with respect toM gives

βJ0M
r−1 = M

1 − q
, (8)
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with respect to q0 and q1 gives

1

2
pβ2J 2q

p−1
0 = q0 −M2

(1 − q)2
(9)

1

2
pβ2J 2(q

p−1
1 − q

p−1
0 ) = q1 − q0

(1 − q1)(1 − q)
, (10)

and with respect to x gives

−1

2
β2J 2(q

p

1 − q
p

0 ) +
1

x2
ln

(
1 − q

1 − q1

)
− q1 − q0

x(1 − q)
+
(q0 −M2)(q1 − q0)

(1 − q)2
= 0. (11)

For the statics, equations (8)–(11) are solved for M , q0, q1, and x. We also find it useful to
consider the free energy with the magnetization constrained; in this case (8) does not apply.
For the calculation under marginal stability, we abandon (11), and instead insist that the lowest
eigenvalue of the Hessian matrix of (5) in the qab should vanish, which is to say that the system
should be marginally stable against small fluctuations in the overlaps. The resulting equation
is

1

(1 − q1)2
− 1

2
p(p − 1)β2J 2q

p−2
1 = 0. (12)

4. Dynamics

The dynamics used are given by the Langevin equation

∂φi

∂t
= −β ∂H

∂φi
− z(t)φi(t) + ξi(t) (13)

where ξi(t) is a Gaussian thermal noise with zero mean and satisfying

〈ξi(t)ξj (t ′)〉 = 2δij δ(t − t ′) (14)

and z(t) is introduced to enforce the spherical constraint (2). The standard generating function
procedure [11, 12] yields a self-consistent mean field equation of motion:

∂φ

∂t
= 1

2
p(p − 1)β2J 2

∫ t

−∞
dt ′G(t, t ′)Cp−2(t, t ′)φ(t ′) + b(t)− z(t)φ(t) + η(t) (15)

where the effective reduced field is b(t) = βJ0M
r−1(t), the local response function is

G(t, t ′) = δ〈φ(t)〉/δb(t ′), the correlation function isC(t, t ′) = 〈φ(t)φ(t ′)〉, the magnetization
isM(t) = 〈φ(t)〉, and there is a renormalized Gaussian noiseη(t)with zero mean and satisfying

〈η(t)η(t ′)〉 = 2δ(t − t ′) + 1
2pβ

2J 2Cp−1(t, t ′). (16)

This equation cannot be solved exactly, but it is possible to obtain self-consistent equations
using the standard ageing assumption [13]

C(t, t ′) = Cst(t − t ′) + C
(
t ′

t

)

G(t, t ′) = Gst(t − t ′) +
1

t
G

(
t ′

t

)
,

(17)

taking the limit of long times and setting all the time derivatives to zero. The calculation
follows [2] and, as expected, gives the equations (8)–(10) and (12) obtained in the MS version
of the replica analysis, identifying

C(1) = q1 C(0) = q0

Cst(0) = 1 − q1 Cst(∞) = 0
(18)
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Figure 1. The phase diagram the spin glass with p = 4 in a magnetic field h [1, 2]. The axes are
j = h/J and t = T/J . The static result is shown by the solid curve; where the dynamic result
differs it is shown by the dashed curve. The transitions are D1RSB to the left of the maximum
and C1RSB to the right. The dotted curve is the continuation of the Almeida–Thouless stability
curve where it does not coincide with the C1RSB. For p = 4, the static and dynamic transition
temperatures are T 0

s ≈ 0.503J and T 0
d ≈ 0.544J at h = 0, and both peak at T = Tm ≈ 0.612J ,

h = hm = J/
√

2 and fall to zero at h = hc = 2J .

Figure 2. The phase diagram for p = 4 and r = 2 [3]. The axes are j = J0/J and t = T/J .
The static results are shown by the solid curves; where the dynamic results differ they are shown
by the dashed curves. Transitions to glassy behaviour are D1RSB to the left of the maximum and
C1RSB to the right.

andM = M(∞). The role played by x is that of a factor in a modified fluctuation–dissipation
theorem in the non-ergodic phase:

1

t
G

(
t ′

t

)
= −xβ$

(
t ′

t

)
∂C(t ′/t)
∂t ′

. (19)

There is a direct correspondence between the breaking of replica symmetry and the breaking
of ergodicity.

5. Results and interpretation

Phase diagrams for a characteristic set of situations are exhibited in figures 1–5; the new results
are in figures 3–5 but figures 1 and 2 are included for orientation (as well as completeness).
In each case p = 4 is chosen, but similar results apply for other p � 3. The remaining
figures show the free energies of systems with constrained magnetizations: these assist in the
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Figure 3. The phase diagram forp = 4 and r = 3. The axes are j = J0/J and t = T/J . The static
spinodal results are shown by the solid curves; where the dynamic results differ they are shown
by the dashed curve. The dot-dashed curve shows the thermodynamic transitions. Transitions to
glassy behaviour are D1RSB to the left of the maximum and C1RSB to the right.

Figure 4. The phase diagram for p = r = 4. The axes are j = J0/J and t = T/J . The static
spinodal results are shown by the solid curves; where the dynamic results differ they are shown by
the dashed curve. The dot-dashed curve shows the thermodynamic transitions.

interpretation of the phase diagrams which result when the constraint is removed and the free
energy minimized with respect to M .

5.1. The r = 1 case
Figure 1 is for r = 1 [1,2], in which case the second term of (1) corresponds to an applied field
h = J0. It is helpful to recall its features. For h > hc the only stable state is paramagnetic.
For h between hc and hm there is a continuous one-step replica symmetry breaking (C1RSB)
transition from paramagnet to spin glass, with (q1 − q0) → 0 at the transition; the transition
temperature is the same statically and dynamically, and the transition coincides with the onset
of Almeida–Thouless instability. At h = hm, this temperature reaches a maximum of Tm. For
h < hm there is a discontinuous one-step replica symmetry breaking (D1RSB) transition from
paramagnet to spin glass, with x → 1 at the transition. The transition temperature is higher
for dynamics (or equivalently marginal stability) than for statics; both transition temperatures
are higher than that at which small fluctuation Almeida–Thouless instability would onset were
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Figure 5. The phase diagram for p = 4 and r = 5. The axes are j = J0/J and t = T/J . The
static spinodal results are shown by the solid curves; where the dynamic results differ they are
shown by the dashed curve. The dot-dashed curve shows the thermodynamic transitions.

it not pre-empted by the discontinuous transition. All three temperatures, which we shall label
Td, Ts, and TAT respectively, fall as h falls; for future use we define Ts = T 0

s at h = 0. In
considering the various systems with ferromagnetic interactions discussed below it will be
helpful to make reference to this case.

Before passing to the generalized models it is also useful to consider the system with
J0 = 0 (for which case the value of r is irrelevant) but with constrained magnetization. For
T > Tm the free energy as a function of M has the form shown in figure 6(a): the stable state
is replica symmetric for all M . As T is reduced below Tm the character of f (M) changes
as shown in figure 6(b), or in more detail in figure 6(c): a gap opens up in which there is no
longer an RS solution stable against Almeida–Thouless fluctuations, and a region in which
there is a new RSB solution appears. The RSB solution spans the gap in the RS solution,
with an overlap at its lower end. That is, the upper end-point of the RSB curve coincides with
the lower end-point of the high-M section of the RS curve, but the lower end-point of the
RSB curve lies on the low-M section of the RS curve below its end-point. The RSB solution
has monotonically increasing (q1 − q0) as M is lowered below the upper connection point
of RS and RSB. The coincidence at the upper end of the gap is related to the possibility of a
continuous RSB, while the overlap at the lower end is related to a discontinuous RSB. As the
temperature is lowered further the gap in the RS curve and range of RSB both grow, with the
latter extending to M = 0 at T � T 0

s , as shown in figure 6(d). For J0 = 0 the minimum of
f (M) is always at M = 0 which is therefore the unconstrained magnetization. For T < T 0

s ,
where both RS and RSB solutions exist at M = 0, the latter is favoured.

Increasing h = J0 for r = 1 modifies the curves f (M) and moves the minimum to a
finite magnetization M = Mmin. For T > Tm, f (M) remains only RS and the unconstrained
state remains paramagnetic. For T 0

s < T < Tm, where there is an RSB curve which does
not extend to M = 0, the sequence of events on increasing h is as follows: (i) the minimum
moves out along the lower section of the RS curve, (ii) it crosses into the region where the
RS and RSB curves overlap and both have minima, the RSB being favoured so that a D1RSB
transition to a spin glass takes place; (iii) the RSB minimum continues to move out, while
the RS minimum reaches the end of the lower RS branch and disappears, corresponding to
crossing the Almeida–Thouless line, but the RS minimum is irrelevant and no phase change
occurs; (iv) the RSB minimum moves up the RSB curve until this gives way smoothly to the
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Figure 6. Plots of the free energy per site f against the constrained magnetization M at various
temperatures when J0 = 0. (In this case there is no dependence on r .) The solid curves give the
RS solutions, the dashed curves the RSB.

upper section of the RS curve and a C1RSB transition back to a paramagnet takes place. For
T < Tm again the RSB curve does extend to M = 0 and the system already favours the spin
glass solution at h = 0, so only (iii) and (iv) occur.

5.2. The r = 2 case

For r � 2 ferromagnetism becomes possible with effective field

heff = J0M
r−1 (20)

determined self-consistently. Figure 2 shows the phase diagram obtained recently [3] for
r = 2. At low J0 the frustration due to the disorder in J continues to prevent ferromagnetism,
as does entropy as the temperature is raised, leading to behaviour similar to that for J0 = 0. At
a temperature-dependent J0 a continuous ferromagnetic transition takes place and the system
goes over to a solution whose magnetization rises continuously with J0. The ferromagnetic
region is split into two parts, non-glassy RS (at higher J0, T ) and glassy 1RSB (at lower J0, T ).
The transition between them directly mirrors the behaviour of figure 1 with h replaced by the
self-consistently determinedheff and is D1RSB (C1RSB) forJ0 less (greater) than the valueJ (r)m

for which heff = hm. (The transition temperature reaches the maximum of Tm at J0 = J
(r)
m .)

Again there is an Almeida–Thouless curve which lies beneath the D1RSB transition line for
J0 < J

(r)
m but is coincident with the C1RSB transition line for J (r)m < J0 < J

(r)
c where J (r)c is

the value of J0 at which heff = hc.
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Figure 7. Plots of the free energy per site f against the constrained magnetization M at various
points in the phase diagram when r = 2. The solid curves give the RS solutions, the dashed curves
the RSB.

The transitions are apparent in f (M) through behaviour directly analogous to that
discussed above for r = 1. In the case of r = 2 the ferromagnetic onsets are second order, with
the minimum in f (M) moving away from M = 0 continuously as J0 is increased across the
transition lines. Figure 7 illustrates several aspects of the phase diagram: 7(a) shows a region
of non-glassy ferromagnetism above Tm, where f (M) is RS throughout its range; 7(b) shows
a non-glassy ferromagnet between Tm and T 0

s for J0 < J
(r)
m , with a gap in the RS curve and an

RSB section but with the minimum in the lower RS region; 7(c) shows a glassy ferromagnet
at the same temperature, where the minimum is now in the RSB region, the system having
undergone a D1RSB transition; 7(d) shows a non-glassy ferromagnet at the same temperature
for J0 > J

(r)
m , with the minimum now in the upper RS region, the system having undergone a

C1RSB transition.

5.3. The r > 2 case

For r > 2 the ferromagnetic transitions are first order, with theM = 0 solution always locally
stable. As noted before, there are two kinds of transition as J0 is increased or T is decreased:
a spinodal transition at which a secondary minimum appears in f (M) at a finite M whilst
the lowest minimum is at M = 0, and a thermodynamic transition at which the finite M
minimum becomes lower than that at M = 0. Figures 3–5 show the full phase diagrams for
p = 4 and r = 3, 4, 5 respectively, as characteristic illustrations of systems with first-order
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Figure 8. Plots of the free energy per site f against the constrained magnetization M at various
points in the phase diagram when r = 3. The solid curves give the RS solutions, the dashed curves
the RSB.

transitions for which r is less than, equal to, and greater than p. Only for the case r < p is
a glassy ferromagnet found with glassy/non-glassy transitions; this transition is analogous to
that for the case r = 2, with D1RSB for J0 less than J (r)m and C1RSB for J0 > J

(r)
m . Figure 8

illustrates the underlying character of f (M), which drives the static transitions. Figures 8(a)
and (b) show the situation for T > Tm, (a) in a region of spinodal ferromagnetism, (b) of
thermodynamic ferromagnetism. Figures 8(c)–(f ) are for T < T 0

s , showing the effect of
increasing J0: (c) is in the spin glass phase, passing to an RSB ferromagnet (d) via a spinodal
transition, with the RSB ferromagnet thermodynamically preferable to the spin glass in (e),
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Figure 9. Plots of the free energy per site f against the constrained magnetization M at a point
near the spinodal transition between spin glass and ferromagnet for r = 4 and 5. The solid curves
give the RS solutions, the dashed curves the RSB.

Figure 10. A detail of the dynamic spinodal phase diagram for p = 4 and r = 3 shown in figure 3.
The axes are j = J0/J and t = T/J . The solid curves are the actual phase transition curves, the
dashed curves are their continuations into regions where they are superseded by earlier transitions.
For clarity, the points where the various curves meet are marked with dots. A qualitatively similar
figure applies for the static spinodal curves. The onset of the glassy ferromagnet is given by 1RSB
solutions to (8)–(11), with M �= 0 and the additional constraints q1 = q0 on (A), x = 1 on (B),
and F ′′

RSB(M) = 0 on (C). The onset of the non-glassy ferromagnet is given by RS solutions to the
equations with M �= 0 and F ′′

RS(M) = 0, and is shown by (D). The onset of the spin glass is given
by 1RSB solutions to the equations with M = 0 and x = 1, and is shown by (E).

and eventually crossing via a continuous transition into an RS ferromagnet in (f ). The smallest
self-consistent value of heff (i.e. that at the spinodal transition) increases with r , and in fact for
r = p at any T < Tm it is exactly that corresponding to the C1RSB line in figure 1 so that the
transition is directly into an RS ferromagnet. This is shown in figure 9(a). (Note that since
the C1RSB line coincides with the Almeida–Thouless line, the RS ferromagnet does become
unstable against RSB fluctuations at the transition.) For r > p the smallest heff is beyond
this critical value and carries the system well into the RS region, so there is no trace of an
RSB ferromagnet. This is shown in figure 9(b). Hence for all r � p glassy ferromagnetism
is suppressed. In the case of r = p the minimum heff corresponds to the same value of J0 for
any T < Tm, yielding a vertical transition line between spin glass and RS ferromagnet.
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For r > p (as in figure 5) the ferromagnet becomes marginally stable against small
fluctuations in M along its spinodal transition line F ′′

RS(M) = 0. The corresponding
thermodynamic transition line is in two segments: for T > T 0

s it is given by FFM = FPM;
whilst for T < T 0

s it is where FFM = FSG. For r = p (as in figure 4) the spinodal transition is
also in two segments: for both segments it has F ′′

RS(M) = 0 as before, but in the lower section
(T < Tm) it simultaneously becomes unstable against Almeida–Thouless fluctuations. The
thermodynamic transition is as for r > p. For r < p (as in figure 3) the spinodal transition
line to glassy ferromagnetism is in three segments (see figure 10): (A) the C1RSB line where
q1 = q0 and x �= 1; (B) the D1RSB line where x = 1 and q1 �= q0; (C) the line F ′′

RSB(M) = 0,
where it is marginally stable against small fluctuations inM again. Non-glassy ferromagnetism
onsets at F ′′

RS(M) = 0, as shown by curve (D) which terminates where it intersects (B). The
static and dynamic results are qualitatively the same, although the lines (B) and (C) are slightly
displaced. The thermodynamic transition lines are as the spinodal lines for the continuous
transitions, but for the first-order order ferromagnetic transitions are at higher J0. This curve is
in three segments: below (E) it is the line FSG = FGFM; between (E) and (B) it is FPM = FGFM;
above (B) it is FPM = FFM.

6. Conclusions

In this paper we have solved the infinite-range spherical p-spin glass with an additional r-spin
ferromagnetic interaction, finding the phase diagrams both in statics and dynamics for p > 2
and general r . By further examination of the free energy with constrained magnetization we
have clarified the origin of the different phases, both for the previously studied models with
r = 1, 2 and for r > 2. We have related the behaviour of systems with r � 2 to those with
r = 1. In all cases, in the replica method, the first step of RSB is sufficient. As previously
noted [3], for r = 2 there are thermodynamically continuous transitions to ferromagnetism with
two types of ferromagnetic region, non-glassy and glassy (figure 2). For r > 2 the ferromagnet
transitions are first order. For r < p there remains a region of parameter space where the system
favours a glassy ferromagnet (figure 3), whereas for r � p glassy ferromagnetism is suppressed
and the ferromagnetic region consists of a single non-glassy phase (figures 4 and 5).
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